You are viewing the page for Jan. 3, 2019
  Select another date:
<<back forward>>
SpaceWeather.com -- News and information about meteor showers, solar flares, auroras, and near-Earth asteroids
 
Solar wind
speed: 311.7 km/sec
density: 3.6 protons/cm3
more data: ACE, DSCOVR
Updated: Today at 2347 UT
X-ray Solar Flares
6-hr max: B1
1714 UT Jan03
24-hr: B1
1714 UT Jan03
explanation | more data
Updated: Today at: 2300 UT
Daily Sun: 03 Jan 19
Sunspot AR2732 is a member of decaying Solar Cycle 24 and poses no threat for strong solar flares. Credit: SDO/HMI

Sunspot number: 16
What is the sunspot number?
Updated 03 Jan 2019

Spotless Days
Current Stretch: 0 days
2019 total: 0 days (0%)
2018 total: 221 days (61%)
2017 total: 104 days (28%)
2016 total: 32 days (9%)
2015 total: 0 days (0%)
2014 total: 1 day (<1%)
2013 total: 0 days (0%)
2012 total: 0 days (0%)
2011 total: 2 days (<1%)
2010 total: 51 days (14%)
2009 total: 260 days (71%)
2008 total: 268 days (73%)
2007 total: 152 days (42%)
2006 total: 70 days (19%)

Updated 03 Jan 2019


Thermosphere Climate Index
today: 3.67
x1010 W Cold
Max: 49.4
x1010 W Hot (10/1957)
Min: 2.05
x1010 W Cold (02/2009)
explanation | more data
Updated 03 Jan 2019

The Radio Sun
10.7 cm flux: 72 sfu
explanation | more data
Updated 03 Jan 2019

Current Auroral Oval:
Switch to: Europe, USA, New Zealand, Antarctica
Credit: NOAA/Ovation
Planetary K-index
Now: Kp= 0 quiet
24-hr max: Kp= 1
quiet
explanation | more data
Interplanetary Mag. Field
Btotal: 4.2 nT
Bz: -0.8 nT south
more data: ACE, DSCOVR
Updated: Today at 2347 UT
Coronal Holes: 03 Jan 19

Solar wind flowing from this large coronal hole should reach Earth on Jan. 4th or 5th. Credit: SDO/AIA
Noctilucent Clouds The southern season for noctilucent clouds (NLCs) has begun! NASA's AIM spacecraft is detecting electric blue clouds at the edge of space over Antarctica.
Switch view: Europe, USA, Asia, Polar
Updated at: 01-02-2019 18:55:03
SPACE WEATHER
NOAA Forecasts
Updated at: 2019 Jan 03 2200 UTC
FLARE
0-24 hr
24-48 hr
CLASS M
01 %
01 %
CLASS X
01 %
01 %
Geomagnetic Storms:
Probabilities for significant disturbances in Earth's magnetic field are given for three activity levels: active, minor storm, severe storm
Updated at: 2019 Jan 03 2200 UTC
Mid-latitudes
0-24 hr
24-48 hr
ACTIVE
25 %
35 %
MINOR
10 %
25 %
SEVERE
01 %
05 %
High latitudes
0-24 hr
24-48 hr
ACTIVE
15 %
10 %
MINOR
30 %
20 %
SEVERE
40 %
65 %
 
Thursday, Jan. 3, 2019
What's up in space
       
 

Solar minimum is here - but even now strangely beautiful auroras are dancing around the poles. Deep inside the Arctic Circle, the expert guides of Aurora Holidays in Utsjoki, Finland, can help you chase them. Book now!

 

SOLAR WIND, INCOMING: NOAA forecasters say there is a 65% chance of G1-class geomagnetic storms on Jan. 5th. That's when a stream of solar wind flowing from a large hole in the sun's atmosphere is expected to hit Earth's magnetic field. A New Moon will provide dark skies for good visibility of Arctic auroras. Free: Aurora Alerts

CHINA LANDS ON THE FARSIDE OF THE MOON: Going where no nation has gone before, today China successfully landed a rover on the farside of the Moon. The Chang'e 4 lunar probe touched down in the South Pole-Aitken Basin, the largest, deepest and oldest known crater in the solar system, at 10:26 am Beijing time on Jan. 3rd.

From Earth, we can see only one side of the Moon. The other side, the farside, is perpetually hidden from view. Apollo astronauts have flown over the farside of the Moon, and many satellites have photographed the Moon from behind–revealing it to be a rugged, heavily cratered landscape startlingly different from the side we typically see.

China's rover will be the first to explore a farside crater, probing it with ground-penetrating radar and measuring its mineral composition with an infrared spectrometer. If water is present, the rover might find it.

The first pictures of the landing site have been relayed to Earth by the Queqiao satellite, which China launched in May 21, 2018, specifically for this purpose. This is what the South Pole-Aitken Basin looks like from the inside:

The landing was remarkable. Mission control had no line-of-sight contact with the lunar farside, so the lander had to perform many complex maneuvers autonomously. (1) As it descended to an altitude of about 2 km, onboard cameras captured the shadows of objects on the lunar surface, identifying large obstacles such as rocks and craters so the probe could avoid them. (2) At 100 meters up, the probe hovered to identify smaller obstacles and measured the slopes on the surface. Its computer calculated again and selected the safest site. (3) At 2 meters above the surface, the engine stopped. Then the golden lander with a silver rover on top touched down on the desolate gray surface with four legs, throwing up some dust. The probe performed the entire landing process, lasting about 12 minutes with no intervention from ground control.

Realtime Space Weather Photo Gallery

GIFTS FROM THE EDGE OF SPACE: The students of Earth to Sky Calculus are about to kick off a new year of cosmic ray balloon launches, continuing a 5-year campaign to monitor increasing levels of radiation in Earth's atmosphere. You can help. Buy any gift item from the Earth to Sky Store and we'll give you 10% off to celebrate the New Year.

All items in the Earth to Sky Store have flown to the edge of space onboard cosmic ray balloons. Each one comes with a greeting card showing the item in flight and telling the story of its journey. All sales support the Earth to Sky Calculus cosmic ray ballooning program and hands-on STEM research.

Far Out Gifts: Earth to Sky Store
All sales support hands-on STEM education


Realtime Comet Photo Gallery


Realtime Aurora Photo Gallery

  All Sky Fireball Network
Every night, a network of NASA all-sky cameras scans the skies above the United States for meteoritic fireballs. Automated software maintained by NASA's Meteoroid Environment Office calculates their orbits, velocity, penetration depth in Earth's atmosphere and many other characteristics. Daily results are presented here on Spaceweather.com.

On Jan. 3, 2019, the network reported 28 fireballs.
(20 sporadics, 5 Quadrantids, 2 December Leonis Minorids, 1 alpha Hydrid)

In this diagram of the inner solar system, all of the fireball orbits intersect at a single point--Earth. The orbits are color-coded by velocity, from slow (red) to fast (blue). [Larger image] [movies]

  Near Earth Asteroids
Potentially Hazardous Asteroids (PHAs) are space rocks larger than approximately 100m that can come closer to Earth than 0.05 AU. None of the known PHAs is on a collision course with our planet, although astronomers are finding new ones all the time.
On January 3, 2019 there were 1947 potentially hazardous asteroids.
Recent & Upcoming Earth-asteroid encounters:
Asteroid
Date(UT)
Miss Distance
Velocity (km/s)
Diameter (m)
2018 YO2
2018-Dec-28
0.5 LD
4.3
4
2018 YM2
2018-Dec-31
6.4 LD
11.3
42
2014 AD16
2019-Jan-04
12.9 LD
9.4
12
2018 YP2
2019-Jan-04
14 LD
17
28
2018 YR2
2019-Jan-05
9.1 LD
5.2
17
2018 XO4
2019-Jan-06
7.8 LD
4
31
2016 AZ8
2019-Jan-07
11.6 LD
9.1
224
2013 YM2
2019-Jan-09
7.3 LD
4.3
20
2018 YQ2
2019-Jan-10
7.5 LD
5.7
22
2018 YU2
2019-Jan-12
5.6 LD
4.6
17
2018 XN
2019-Jan-14
11.9 LD
5.6
59
2013 CW32
2019-Jan-29
13.9 LD
16.4
148
2013 RV9
2019-Feb-06
17.9 LD
5.9
68
2017 PV25
2019-Feb-12
7.3 LD
6.1
43
455176
2019-Feb-20
19.2 LD
26.5
269
2016 CO246
2019-Feb-22
15.8 LD
5.5
23
2018 DE1
2019-Feb-27
19.8 LD
6.5
28
2016 FU12
2019-Feb-27
15.4 LD
5.2
15
Notes: LD means "Lunar Distance." 1 LD = 384,401 km, the distance between Earth and the Moon. 1 LD also equals 0.00256 AU. MAG is the visual magnitude of the asteroid on the date of closest approach.
  Cosmic Rays in the Atmosphere

SOMETHING NEW! We have developed a new predictive model of aviation radiation. It's called E-RAD--short for Empirical RADiation model. We are constantly flying radiation sensors onboard airplanes over the US and and around the world, so far collecting more than 22,000 gps-tagged radiation measurements. Using this unique dataset, we can predict the dosage on any flight over the USA with an error no worse than 15%.

E-RAD lets us do something new: Every day we monitor approximately 1400 flights criss-crossing the 10 busiest routes in the continental USA. Typically, this includes more than 80,000 passengers per day. E-RAD calculates the radiation exposure for every single flight.

The Hot Flights Table is a daily summary of these calculations. It shows the 5 charter flights with the highest dose rates; the 5 commercial flights with the highest dose rates; 5 commercial flights with near-average dose rates; and the 5 commercial flights with the lowest dose rates. Passengers typically experience dose rates that are 20 to 70 times higher than natural radiation at sea level.

To measure radiation on airplanes, we use the same sensors we fly to the stratosphere onboard Earth to Sky Calculus cosmic ray balloons: neutron bubble chambers and X-ray/gamma-ray Geiger tubes sensitive to energies between 10 keV and 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.

Column definitions: (1) The flight number; (2) The maximum dose rate during the flight, expressed in units of natural radiation at sea level; (3) The maximum altitude of the plane in feet above sea level; (4) Departure city; (5) Arrival city; (6) Duration of the flight.

SPACE WEATHER BALLOON DATA: Approximately once a week, Spaceweather.com and the students of Earth to Sky Calculus fly space weather balloons to the stratosphere over California. These balloons are equipped with radiation sensors that detect cosmic rays, a surprisingly "down to Earth" form of space weather. Cosmic rays can seed clouds, trigger lightning, and penetrate commercial airplanes. Furthermore, there are studies ( #1, #2, #3, #4) linking cosmic rays with cardiac arrhythmias and sudden cardiac death in the general population. Our latest measurements show that cosmic rays are intensifying, with an increase of more than 18% since 2015:

The data points in the graph above correspond to the peak of the Reneger-Pfotzer maximum, which lies about 67,000 feet above central California. When cosmic rays crash into Earth's atmosphere, they produce a spray of secondary particles that is most intense at the entrance to the stratosphere. Physicists Eric Reneger and Georg Pfotzer discovered the maximum using balloons in the 1930s and it is what we are measuring today.

En route to the stratosphere, our sensors also pass through aviation altitudes:

In this plot, dose rates are expessed as multiples of sea level. For instance, we see that boarding a plane that flies at 25,000 feet exposes passengers to dose rates ~10x higher than sea level. At 40,000 feet, the multiplier is closer to 50x.

The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.

Why are cosmic rays intensifying? The main reason is the sun. Solar storm clouds such as coronal mass ejections (CMEs) sweep aside cosmic rays when they pass by Earth. During Solar Maximum, CMEs are abundant and cosmic rays are held at bay. Now, however, the solar cycle is swinging toward Solar Minimum, allowing cosmic rays to return. Another reason could be the weakening of Earth's magnetic field, which helps protect us from deep-space radiation.

  Essential web links
NOAA Space Weather Prediction Center
  The official U.S. government space weather bureau
Atmospheric Optics
  The first place to look for information about sundogs, pillars, rainbows and related phenomena.
Solar Dynamics Observatory
  Researchers call it a "Hubble for the sun." SDO is the most advanced solar observatory ever.
STEREO
  3D views of the sun from NASA's Solar and Terrestrial Relations Observatory
Solar and Heliospheric Observatory
  Realtime and archival images of the Sun from SOHO.
Daily Sunspot Summaries
  from the NOAA Space Environment Center
NOAA 27-Day Space Weather Forecasts
  fun to read, but should be taken with a grain of salt! Forecasts looking ahead more than a few days are often wrong.
Aurora 30 min forecast
  from the NOAA Space Environment Center
Heliophysics
  the underlying science of space weather
Spaceweather.com welcomes these supporters of science communication: SEO Phoenix AZ and CRAS, the Conservatory of Recording Arts and Sciences and Windshield Replacement Phoenix and Breast Augmentation Phoenix and Dentist Chandler, AZ.
   
Look no further to find the best Comox Valley Real Estate listings and homes for sale
   
NASA Near Earth Asteroid Home Page
   
Chicago SEO Expert
   
Search Kelowna Real Estate Listings & Homes for Sale easily.
Find help on all Calgary Homes For Sale and Real Estate Listings. Great source for Edmonton Real Estate Listings & Homes For Sale
   

If you are a Youtuber and want to buy real Youtube views than try out Buyrealsocial.com for the best results possible!

   

To find reviews of new online casino sites in the UK try The Casino DB where there are hundreds of online casino reviews complete with bonuses and ratings.

Looking for a new online casino? Try Casimpo the new site dedicated to making online casino simple and easy for all.

  These links help Spaceweather.com stay online. Thank you to our supporters!
  more links...
       
©2018 Spaceweather.com. All rights reserved. This site is penned daily by Dr. Tony Phillips.
©2019 Spaceweather.com. All rights reserved.