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Linking solar minimum, space 
weather, and night sky brightness
Albert D. Grauer 1,3* & Patricia A. Grauer 2

This paper presents time-series observations and analysis of broadband night sky airglow intensity 4 
September 2018 through 30 April 2020. Data were obtained at 5 sites spanning more than 8500 km 
during the historically deep minimum of Solar Cycle 24 into the beginning of Solar Cycle 25. New 
time-series observations indicate previously unrecognized significant sources of broadband night 
sky brightness variations, not involving corresponding changes in the Sun’s 10.7 cm solar flux, occur 
during deep solar minimum. New data show; (1) Even during a deep solar minimum the natural night 
sky is rarely, if ever, constant in brightness. Changes with time-scales of minutes, hours, days, and 
months are observed. (2) Semi-annual night sky brightness variations are coincident with changes in 
the orientation of Earth’s magnetic field relative to the interplanetary magnetic field. (3) Solar wind 
plasma streams from solar coronal holes arriving at Earth’s bow shock nose are coincident with major 
night sky brightness increase events. (4) Sites more than 8500 km along the Earth’s surface experience 
nights in common with either very bright or very faint night sky airglow emissions. The reason for 
this observational fact remains an open question. (5) It is plausible, terrestrial night airglow and 
geomagnetic indices have similar responses to the solar energy input into Earth’s magnetosphere. Our 
empirical results contribute to a quantitative basis for understanding and predicting broadband night 
sky brightness variations.  They are applicable in astronomical, planetary science, space weather,  light 
pollution, biological, and recreational studies.

Natural night sky airglow is powered by solar energy received from space weather above and tropospheric activ-
ity below1. This complex environment is a unique laboratory providing a rich tapestry of solar and terrestrial 
phenomena. In the past, especially in the artificial light at night community there was little appreciation of the 
dynamic nature of the natural night sky. Awareness is growing that the study of natural terrestrial airglow may 
offer clues to researchers in fields as diverse as geomagnetic activity, climate change, high energy cosmic rays, 
planetary atmospheres, gravity waves, severe weather, light pollution, nocturnal plants and animals, recreation 
in parks, radio communications, and more. Scientific studies related to the brightness of the natural night sky 
are published in the astronomy, aeronomy, planetary, biological, meteorological, geomagnetic, and other forums 
of scientific and technical literature. Unfortunately, papers in these diverse fields do not reliably cross reference 
each other.

The intensity of the broadband night sky brightness determines the integration time to achieve the desired 
limiting magnitude and signal to noise for objects in a deep astronomical image2. A quantitative understanding 
of natural broadband night sky airglow is essential to discover faint Earth approaching asteroids and to schedule 
observations by telescopes like the Vera C. Rubin Observatory3,4. Astrophotography opportunities and stargazing 
world wide benefit from a knowledge of the broadband brightness of the natural night sky5. Mitigation of detri-
mental effects of artificial light at night (ALAN) require a knowledge of variations in the broadband brightness 
of the natural night sky6–9.

A broad range of atmospheric conditions impact astronomical observations from the Earth’s surface4. In the 
past, many of the night sky brightness measurements, published in the astronomical literature, were made by 
research-grade instruments occasionally scheduled for this task or as a by product of another scientific research 
project10–15. Data and models of night sky brightness are used to plan observations and to protect observatory 
sites4,15,16. Astronomers have recognized that broadband night sky brightness has, diurnal, semi-annual, solar 
cycle variations9,15.

Researchers in the aeronomy community study physical and chemical processes in various layers of Earth’s 
upper atmosphere which, in aggregate, account for the broadband airglow emissions we study in this paper. In 
1970, Silverman published a comprehensive review of night airglow phenomena. It is still informative today17. 
Deutsch and Hernandez review the observational behavior of the intensity of the OI 558 nm line during 
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geomagnetic quiet conditions18. Near Adelaide, Australia, 15 years of observations of atomic oxygen (OI) 558 nm 
and hydroxyl (OH) 730 nm reveal annual, semiannual, solar cycle, and other variations in night airglow19. 
Researchers at Andes Lidar Observatory report 142 nights from September 2011 to April 2018 have an unusual 
patten of O(1S) night airglow enhancement with concurrent weaker OH(6,2) emission. This data set showed a 
semi-annual occurrence rate reaching maxima near the equinoxes20. Thirty years of airglow data at OI 557.7 nm 
and OI 630.0 nm have been used to establish a data driven model consistent with the GLOW airglow model. The 
result is the ability to visualize seasonal and solar cycle variations in red and green oxygen lines21,22. From 1998 
to 2001, airglow emissions OI5577, O2b(0,1), and OH(6,2) and the rotational temperature of the OH band, at 
an equatorial location, show semiannual variations with maxima at the equinoxes and minima at the solstices23.

Geomagnetic scientists study the nature and frequency of geomagnetic storms, their relationship to events 
on the Sun, and their effects on the Earth’s magnetosphere. Changes in natural night sky brightness, including 
auroras, provide clues about ionospheric and space weather processes. Extreme events in this realm have a sig-
nificant impact on electrical grids, electronic communication, and navigation satellites24.

Geomagnetic activity has a long history of time series measurements and their analysis. Conversely, inter-
ruptions by the Sun, Moon, weather events, and the lack of a wide spread network of suitable measuring stations 
at natural night sky locations have left the study of broadband natural night sky airglow brightness variations 
relatively undeveloped.

The semi-annual variation in geomagnetic activity has been known for over 100 years25. In 1971, Russell and 
McPherron proposed a model to explain this phenomena in terms of the relationship between the z component 
of the interplanetary magnetic field, [B(t)z]GSM, and the z component of the Earth’s magnetic field26. [both 
expressed in the Geocentric Solar Magnetospheric (GSM) coordinate system]. In the Russell and McPherron 
model the interaction between these two magnetic fields acts like a rectifier. When [B(t)z]GSM is negative, 
opposite Earth’s magnetic field, charged particles are more likely to penetrate the ionosphere. When [B(t)z]
GSM is positive, in the same direction as the Earth’s magnetic field they are partially blocked. A negative [B(t)
z]GSM produces enhanced geomagnetic activity. Examples of the geomagnetic activity to which these authors 
refer include the number of geomagnetic storms per month and the geomagnetic index U. According to the 
Russell and McPherron model geomagnetic activity reached a maximum around 4 April 2019 and 7 October 
2019. Expressed in fractions of a year, F, these peaks are at F = 0.257 and F = 0.769. It should be emphasized, this 
model is based on the statistics of geomagnetic events above a certain threshold. There are broad peaks and dips 
with a full width at half maximum of many days.

In a series of papers, Lockwood et al.27–29 investigate the semiannual, annual, and Universal Time variations 
in the magnetosphere and geomagnetic activity. A key element in their research is an estimation of the power 
input into the magnetosphere, Pα. They calculate Pα, employing interplanetary measurements with the formula 
originally derived, theoretically, by Vasyliunas et al.30 Pα has only 1 free parameter, the coupling factor α. It is 
driven by the speed, number density, ion mass measurements of the solar wind, and modulated by the interplan-
etary magnetic field’s strength and orientation. In general, geomagnetic parameters have fractional variational 
amplitudes larger than corresponding temporal fractional changes in Pα. This amplification can be seen by 
comparing the am geomagnetic index with Pα

28. This research group shows the Russell-McPherron Effect is the 
principal driver of semi-annual geomagnetic activity even though it has a small impact on Pα. Interestingly, they 
report the intensity of geomagnetic activity produced by the Russell-McPherron Effect is, apparently, amplified 
by the release of energy stored in the Earth’s magnetospheric tail.

Data collection and analysis
In this paper, photometers are employed to obtain a time-series of differential photometric brightness measure-
ments of the same place on the celestial sphere along the zenith declination relative to celestial sources. This 
procedure minimizes errors encountered using data from several different instruments and individual instru-
ment drift in sensitivity if it exists.

Our research is enabled by accurate, low cost, scientific quality SQM-LU-DL31 and TESS-W32 photometers. 
They provide continuous measures of zenith night sky brightness dusk to dawn every night. These two photom-
eters use the same detector, have slightly different fields of view, and different red responses31. The SQM-LU-DL 
uses a color filter. The TESS-W employs a dichroic filter. These filters and TSL237 photodiode they both employ 
sets the spectral response of each instrument. The SQM-LU-DL has a spectral response which spans most of 
the Johnson B and V filters while the TESS-W has a substantially greater red response spanning more than the 
Johnson-Cousins B,V, and R pass bands9. The SQM-LU-DL and TESS-W report instrumental M(t) values in 
mag/arcsec2. These two instruments are slightly different measures of broadband night sky brightness. However, 
their differential photometric measurements produce similar results. In the differential photometry mode we 
employ, our photometers are more accurate (error < 0.03 mag/arcsec2) compared to when used as calibrated 
absolute photometers (error ~ 0.1 mag/arcsec2)31. The irradiance-to-frequency semiconductor detector employed 
by both the SQM-LU-DL and TESS-W instruments is calibrated to report the measurements in mag/arcsec2.33.

An approximate conversion of mag/arcsec2 to cd/m2 is:

L0 is 1.475 × 105 cd/m2 in the AB System and 1.2216 × 105 cd/m2 in the Vega system34.
On clear, astronomically dark nights, these single channel photometers, pointed at zenith, measure light 

accumulated from terrestrial airglow, stars, planets, scattered star light, zodiacal light, nebulae, galaxies, other 
faint astronomical sources, and anthropogenic skyglow, if present. SQM and TESS-W photometers sum all 
emissions in a broad cone to the edge of space over a relatively wide area of the sky. These characteristics make 

Lv

[

in cd/m2
]

= L0 ∗ 10
−(0.4∗M(t) [in mag/arcsec2])
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it difficult to identify the physical processes creating the emissions. These instruments produce time-series data 
to identify broadband airglow brightness events for further study.

Time-series data are collected at Cosmic Campground International Dark Sky Sanctuary (CCIDSS) and Cat-
alina Sky Survey Mt. Lemmon Station (CSSMLS). Data from TESS-W photometers located at Spain Observatorio 
Astrofísico de Javalambre- Arcos de las Salinas/Teruel (Stars 18), Centre d’Observació del’Universe, Àger, Lleida, 
Spain (Stars 62), and Observatorio del Teide, Izaña, Tenerife, Spain. (Stars 211) were downloaded from the TESS 
Data Monthly data files using IAU-IDA format35.

The artificial levels in Table 1 are estimates from satellite data adjusted by ground-based SQM observations36. 
CCIDSS is a unique standard more than 60 km away from any significant source of artificial light. Analysis of 
all-sky images and the satellite estimate, of less than 1/2% artificial light, indicates anthropogenic skyglow is 
unmeasurable at zenith at CCIDSS36,37.

We have developed techniques and software to process the time-series data. Our software selects individual 
instrumental time-series measurements, M(t), taken at time t, when the Sun was more than 18° below the hori-
zon, the Moon was more than 10° below the horizon, and the sky was clear. The 10° Moon limit is necessitated 
by large changes in lunar brightness as the Moon passes through its phases every month. On photometric nights, 
at the CCIDSS, measurements show that if the Moon is less than 74% illuminated it provides negligible light at 
zenith when it is 10° or more below the horizon. The situation changes rapidly when the Moon approaches the 
horizon. For example, a 19% illuminated Moon, 5° below the horizon, increases the zenith sky brightness by 
0.02 mag arcsec2. The Moon’s zenith illumination, when it is still below the horizon, could be effected by mois-
ture and/or dust in the atmosphere thus it is better to be conservative in selecting a value for this parameter31.

Sky clearness is measured by computing Chi Squared from a straight line fit to the data extending for 45 min 
on either side of the point in question. A Chi Squared of less than 0.009 for at least 1.5 h rejects suspect data but 
not the rising Milky Way31. This metric is employed to exclude data from marginal non-photometric nights. 
As an additional check, the TESS-W near IR sensor is employed to estimate cloud cover32. At Stars 211, in only 
one case out of 198 nights, did the Chi Squared fit indicate clear skies, while the IR sensor indicated cloudiness. 
For the TESS-W data, the original 1 min data are averaged over 5 min intervals to produce 5 min samples. Our 
software calculates the Right Ascension (R.A.), Declination (Dec.), Julian Date(JD), Local Sidereal Time (LST), 
Solar and Lunar Altitudes and other parameters for each M(t) data point.

A total of 12,892, M(t), time-series data points, sorted into 1/2 h bins in R.A., obtained at CCIDSS September 
2018 through April 2020 are plotted in Fig. 1. The vertical distribution of sky brightness, at each sky position of 

Table 1.   The sites and instrumentation used in this study.

Site Instrument Latitude Longitude Elevation (m) Artificial level (μcd/m2)36

CCIDSS SQM-LU-DL31 33.4793° N 108.9226° W 1634 0.632

CSSMLS SQM-LU-DL31 32.4420° N 110.7893° W 2791 132

Stars 18 TESS-W32 40.0371° N 1.001815° W 1589 31.8

Stars 62 TESS-W32 42.0246° N 0.73479° W 810 37.0

Stars 211 TESS-W32 28.2983° N 16.5105° W 2106 123

Figure 1.   The vertical axis is the instrumental sky brightness, M(t), in mag/arcsec2. It shows changes in 
broadband night time terrestrial airglow at each sky position during various time periods as the data were 
accumulated. Since solar energy ultimately powers this airglow it is plausible observed broadband airglow 
variations are caused by changes in solar activity. The horizontal axis is the position in the sky in hours of R.A. 
(the data being sorted into 1/2 h bins). The minimum broadband night sky brightness at each location on the 
celestial sphere is an observational fact. The continuous light curve of quiescent airglow was calculated using the 
faintest 10% of the M(t) in each 1/2 h R.A. bin. The 10% is arbitrary and was chosen to have reasonable statistics. 
The fitted curve is indicated in this figure. It is the broadband sky brightness when the terrestrial airglow is at 
minimum.
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R.A., is due to changes in terrestrial airglow. Since M(t) are measured in mag/arcsec2 brighter values are smaller 
numerically.

Plots similar to Fig. 1, for the other sites, observationally establish a quiescent value of airglow at each location 
on the celestial sphere. The existence of a minimum intensity of broadband airglow at each RA on the celestial 
sphere is a unique observational fact for each site. Alternatively, one could, also, establish a value for the quiescent 
airglow level by adding up the minimum values for all known sources of diffuse night sky brightness16.

Along the zenith declination on the celestial sphere, 1/2 h bins in R.A., are used as 48 standard candles. 
Each such standard candle is the average of the 10% faintest M(t) measurements at its location on the celestial 
sphere. A set of joined polynomials are fitted to the 48 standard candles to produce a continuous light curve of 
quiescent broadband airglow brightness. This fitted M(t) versus RA light curve is the background contribution 
from celestial sources and the broadband night airglow when it is at minimum. These concepts using data from 
CCIDSS are shown in Fig. 1. Each site has a unique light curve of quiescent broadband airglow brightness which 
depends on its latitude and the degree to which it is influenced by anthropogenic light. These light curves are an 
observational characteristic of each site. Each measured point’s brightness above the quiescent airglow, ΔM(t), is 
obtained by subtracting the continuous light curve of quiescent broadband airglow from the data, point by point. 
This procedure removes light from the stars, planets, Milky Way, zodiacal light, other celestial sources, and con-
stant anthropogenic light if present. Thus, each ΔM(t), is a differential photometric night sky brightness at time 
t, relative to the brightness of the same point on the celestial sphere when the airglow is at minimum. The same 
procedure is used to produce, ΔM(t), a time series of airglow brightness above its quiescent level for each site.

To evaluate conditions during the night at each site, we averaged the ΔM(t) data into 1/2 h time intervals 
relative to local midnight. The results are plotted in Fig. 2. The error bars, produced by real airglow variations, 
are ± 1 standard deviation for the 1/2 h bin averages. At CCIDSS, the quiescent airglow light curve is relatively 
flat (average 0.18 mag/arcsec2). The standard deviation of 0.136 mag/ arcsec2 is produced by real changes in 
airglow. On long winter nights, before the onset of astronomical twilight, there does seem to be an increase of 
approximately 0.07 mag/arcsec2. The origin of this increase is unclear. There appear to be other reports of this 
phenomena in the literature38. It is plausible natural night sky broadband airglow, in certain situations, has a UT 
dependence similar to the geomagnetic indices29.

At CSSMLS, ΔM(t) is correlated with automobile driving patterns and scheduled outdoor lighting changes in 
and around Tucson, AZ. At Stars 18, Stars 62, and Stars 211 there appears to be prolonged morning and evening 
twilight when the Sun is more than 18° below the horizon. This result could be due to the extended red response 
of the TESS-W photometers and/or the European pattern of artificial lighting in nearby cities.

For each site the ΔM(t) data versus the time relative to local midnight were fit to a quadratic function. Cor-
rections using these functions were used to flatten the curves of Fig. 2, tighten the agreement between sites, 
and are small. In mag/arcsec2, the site (median, stdev) correction values are CCIDSS (0.005, 0.008), CSSMLS 
(− 0.018, 0.056), Stars 18 (0.017, 0.048), Stars 62 (0.016, 0.040), and Stars 211 (− 0.033, 0.029). Each data point, 
ΔMC(t), is the corrected broadband airglow brightness above the continuous light curve of quiescent airglow 
brightness (Fig. 1). The resulting time-series of data points, ΔMC(t), for each site are used to track the natural 
zenith broadband night sky airglow uncontaminated by celestial and other sources above its quiescent level.

We compare the zenith natural broadband airglow above its quiescent level, ΔMC(t),during a deep solar mini-
mum, with conditions in the near Earth environment. We employ solar wind data as compiled and presented on 
the NASA Omni Plus Browser39, sunspot counts, 10.7 cm(t) (2.8 GHz) solar flux, and Geomagnetic indices40–43.

We obtained the 1 h averages for [B(t)z]GSM, [Bz(t)], V(t) [Kp Speed], and n(t) [Kp-Proton Density] from 
the NASA Omni Plus Browser44. These parameters are the solar wind conditions at Earth’s magnetic bow shock 
nose at time t.

Assuming protons are the predominate ions in the solar wind, we define a dimensionless measure of the solar 
wind kinetic energy, NKE(t), to be n(t) [measured Kp-Proton density] times v(t) [solar wind speed] squared 
divided by the median of this quantity for the period 4 September 2018 through 30 April 2020. Similar calcula-
tions were made to obtain dimensionless solar flux, N10.7 cm(t), and dimensionless Potsdam Geomagnetic 
index, NAp(t). These dimensionless units are used to plot graphs which show relevant space weather conditions.

Figure 2.   The vertical axis is brightness of the ΔM(t) time series data averaged into 1/2 h time intervals 
relative to local midnight for each site. In the astronomical magnitude system of units the brightest ΔM(t) 
measurements are the most negative. The horizontal axis is the time in hours relative to local solar midnight.
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[B(t)z]GSM is the z component of the interplanetary magnetic field in geocentric solar magnetospheric sys-
tem (GSM) in units of nT. In GSM system the z axis is aligned with the Earth’s northern magnetic pole. Thus, a 
positive [B(t)z]GSM enhances the Earth’s magnetic field while a negative [B(t)z]GSM opposes it.

An example of these concepts and calculations, Fig. 3, presents time-series data obtained on the night of 2019 
February 7–8 (JD 2,458,522). Each data point, ΔMC(t), is the broadband airglow brightness above the continu-
ous light curve of quiescent airglow brightness. This was a rare night when zenith sky brightness reached nearly 
record faint levels at all sites. In the direction away from the disk of the Milky Way (LST 11–14 h) the measured 
sky brightnesses were: CCIDSS (22.128 mag/arcsec2, stdev = 0.016), CSSMLS (21.456 mag/arcsec2, stdev = 0.009), 
and Stars 211 (21.469 mag/arcsec2, stdev = 0.038). The photometers at CCIDSS and CSSMLS were in sync with 
one another for 4 h with a delta magnitude of 0.032 mag/arcsec2 (stdev 0.014 mag/arcsec2). In the upper panel 
the dimensionless values of NKE(t), NAp(t), and N10.7 cm(t) were all steady, at or below their median values. 
The [B(t)z]GSM had relatively small variations. All of these measurements taken together indicate a state of low 
solar and geomagnetic activity.

Results
Time-series photometric observations were taken at 5 sites spanning more than 8500 km during the minimum 
of Solar Cycle 24 into the beginning of Solar Cycle 25. During this time one might have expected nightly airglow 
variations to be at a minimum. These data verify the natural night sky is rarely, if ever, constant in intensity. At 
a natural night sky location like CCIDSS during deep solar minimum the 5 min cadence time-series broadband 
airglow had a range in ΔMC(t) of 0.729 mag/arcsec2. This corresponds to a maximum/minimum flux ratio of 
1.957. The nightly airglow average ΔMCN(t) over a total of 241 nights at CCIDSS ranged from a very active night 
(2,458,792.979282JD) at − 0.536 mag/arcsec2 to a quiescent one (2,458,522.840410 JD) at 0.028 mag/arcsec2. 
This nightly range of − 0.564 mag/arcsec2 corresponds to a flux ratio maximum/minimum intensity ratio of 1.68.

At CCIDSS, September 2018 through April 2020, 10 nights were recorded to have an average minimum 
broadband SQM brightnesses of 22.07 mag/arcsec2 (stdev 0.03 mag/arcsec2). These data were accumulated in 
the RA range 10.5–12.5 h.

Despite our instrument’s dusk to dawn coverage every night, the observations were unavoidably interrupted 
by Sun, Moon, clouds, and instrument down time. For the total elapsed time during this research, 4 September 
2018 through 30 April 2020, the % of time logged during clear astronomical dark conditions was for CCIDSS 
(7.4%), CSSMLS (5.6%), Stars 18 (1.6%), Stars 62 (3.3%), and Stars 211 (5.1%). Our data must be regarded as a 
small sample of sky brightness during this time. Thus, unless one has a worldwide network of monitoring sta-
tions, at dark sky locations, many important airglow events will be missed.

Observations and 10.7  cm solar flux.  The 948 nightly broadband airglow brightness measurements 
obtained from 37,437 individual time-series observations made at 5 locations, 4 September 2018 (2,458,365.5 
JD) through 30 April 2020 (2,458,969.5 JD) are plotted in Fig. 4. The celestial and anthropogenic sources have 
been removed as outlined in “Data collection and analysis” of this paper. The x axis is the time in Julian Date 
and the vertical axis is the nightly average of broadband airglow brightness, ΔMCN(t), above its quiescent level. 
In this paper ΔMCN(t) is defined to be the nightly average broadband airglow intensity above its quiescent 
level with the quadratic correction of Fig. 2. Since ΔMCN(t) are measured in mag/arcsec2 brighter values are 
smaller numerically. The error bars are ± 1 standard deviation. These standard deviations represent changes in 
broadband airglow during the night. Figure 4 shows during a deep solar minimum natural night broadband 
airglow brightness varies by more than 0.5 mag/arcsec2 (intensity ratio 1.58). Local night sky airglow brightness 
events span a distance of a few hundred km. Others can extend 8500 or more km along the Earth’s surface (see 

Figure 3.   A dark night experienced at sites spanning a distance of more than 8500 km. The horizontal axis is 
the JD–2,458,000 in days. [B(t)z]GSM in nT along with the dimensionless solar wind kinetic energy, NKE(t), 
dimensionless geomagnetic index, NAp(t), and the dimensionless radio solar flux, N10.7 cm(t) are plotted in the 
upper panel to summarize space weather conditions. The time-series airglow brightness data points, ΔMC(t), 
in mag/arcsec2 are plotted in the lower panel for Stars 211, CSSMLS, and CCIDSS. Each point is the differential 
photometric brightness relative to the continuous light curve of quiescent airglow brightness.
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“Geographic variations”). Regular temporal gaps in the time series of ΔMCN(t) plotted in Fig. 4 are the result 
of the Moon having an elevation greater than 10° below the horizon. These gaps, centered on full Moon, are 
approximately 29.35 days apart. The solar synodic rotation period is 26.24 days. The similarity between these two 
periods makes it difficult to identify the solar rotation in the data.

Each nightly average broadband airglow measurement at CCIDSS, ΔMCN(t), was matched with the 10.7 cm 
flux value, from approximately 12 h earlier (median 11.48 h)45. This was done to compare the daytime solar 
illumination on the previous day with the night time airglow. The results are plotted in Fig. 5. The broadband 
brightness changes we observed are not correlated with changes in solar EUV flux. During the entire period 
of our observations, the solar EUV measured by the 10.7 cm(t) solar flux was at a low, relatively constant, level 
(average = 69.77 s.f.u., stdev = 2.45, 1 s.f.u. = 104 Jy). The range in this parameter during a solar cycle is from 
below 50 to above 300 s.f.u.46.

Night sky brightness increase events.  The ΔMCN(t), are corrected nightly average increases of the 
broadband night airglow above its quiescent level. These measurements are plotted versus Julian Date in Fig. 4. 
The error bars are ± 1 standard deviation about the mean. They represent real changes during the night. Broad 
maxima in ΔMCN(t) occurred near JD 2,458,435 (12 November 2018), JD 2,458,589 (16 April 2019), and JD 
2,458,786 (29 October 2019). These dates were obtained by fitting the ΔMCN(t) data to a quadratic formula 
extending 1 or 2 lunations either side of the peak. Each of these three broad maxima is an envelope of a number 
of broadband airglow brightness increase events separated by periods of bright moon. Events A, B, and C were 
selected as examples because they are representative and have corroborating data. They are marked in Fig. 4.

Event A.  From July to November 2018 the same large coronal hole was observed on the Sun47. It pointed in our 
direction every solar synodic period. After each such alignment, several days later Earth was engulfed in a high 
energy stream in the solar wind. These circumstances produced airglow and geomagnetic events world wide and 
was imaged by astronauts on the International Space Station. This series of events produced the broad maxima 
in night sky brightness near JD 2,458,435 (12 November 2018).

Figure 4.   The nightly average airglow above its quiescent level, ΔMCN(t), (mag/arcsec2) for each site are 
plotted versus the time in Julian Date (days). The error bars for each night are ± 1 standard deviation about the 
mean. They represent changes during the night. Event A, Event B, and Event C. are discussed in the text. The 
actual measurement errors are less than 0.03 mag/arcsec2.

Figure 5.   The vertical axis is the average nightly broadband airglow at CCIDSS at time t, ΔMCN(t). The error 
bars are ± 1 standard deviation about the mean. They represent changes during the night. The horizontal axis is 
the 10.7 cm flux value at time closest to t − 0.5 d.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23893  | https://doi.org/10.1038/s41598-021-02365-1

www.nature.com/scientificreports/

Event A is one of several broadband airglow increase events during an active period that spanned several 
solar rotations. Event A began at 2,458,398.895833 JD when a pulse in the dimensionless solar wind proton 
kinetic energy, NKE(t), was observed at Earth’s bow shock nose. At this time our planet encountered an energetic 
stream in the solar wind. Before Event A the space weather conditions were relatively steady. The upper panel 
of Fig. 6 plots some space weather parameters before and after Event A. The dimensionless solar wind kinetic 
energy, NKE(t), increased to more than four times its median level. NAp(t), the daily dimensionless Potsdam 
geomagnetic Ap index increased to more than five times its median value. The peak Ap on day 2,458,399 JD 
was 56. It increased to more than five times its median level, indicating a significant geomagnetic disturbance. 
Meanwhile, the solar EUV as measured by the 10.7 cm(t) radio flux remained near its median value of 70 SFU.

In the lower panel of Fig. 6 the x axis is the time in Julian Date–2,458,000 (days) and the vertical axis is the 
nightly average of broadband airglow brightness, ΔMCN(t), at CCIDSS, above its quiescent level (mag/arcsec2). 
The error bars are ± 1 standard deviations about the mean. They are real changes during the night. The time-series 
data for individual nights are plotted in Fig. 8.

At 2,458,399.15646 JD an astronaut on the International Space Station took an image showing Earth engulfed 
in a bright orange airglow (Fig. 7).

Figure 6.   Upper panel: space weather conditions NKE(t), Nap(t), and N10.7 cm(t) are the dimensionless 
kinetic energy, Potsdam geomagnetic index Ap(t), and 10.7 cm(t) solar radio flux. See the text “Data collection 
and analysis” for definitions of these dimensionless quantities. [B(t)z]GSM measurements in nT are plotted 
in red when [B(t)z] GSM < 0 and blue when [B(t)z] GSM > 0. Lower panel: broadband average nightly airglow 
measurements,, ΔMCN(t), at CCIDSS above their quiescent levels are plotted versus Julian date. The ± 1 
standard deviation error bars indicate significant changes during the night. See Fig. 8 for each night’s data 
plotted individually.

Figure 7.   NASA International Space Station astronauts took the Image ISS-057-35382 on 2018.10.07 at 
15:45:17.99 (JD = 2,458,399.15646) location 30.6S, 133.4E. NASA issued a press release stating the Earth was 
surrounded by airglow.
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The development of broadband night sky brightness Event A at CCIDSS is shown in Fig. 8. At Earth’s bow 
shock nose, Event A, began with the arrival of a pulse in the dimensionless solar wind proton kinetic energy, 
NKE(t), at 2,458,398.895833 JD. The broadband 5 min cadence, time-series airglow measurements, ΔMC(t), 
above their quiescent levels are plotted versus the time in hours relative to local midnight for 7 nights in Fig. 8. 
These nights are designated by XXX the Julian Date being 2458XXX JD. (XXX = 396, 397, 398, 400, 401, 402, 
or 406). Before Event A, the nights 396, 397, and 398 showed relatively small variations in broadband airglow 
brightness during the night with maxima near local midnight. This is typical for broadband airglow during a rela-
tively quiet night. The night of 397 peaked at approximately 0.5 h before local midnight at maximum brightness, 
ΔMC(t), of − 0.23 mag/arcsec2. The nights of 396 and 397 tracked each other for 5.34 h with average difference of 
0.022 mag/arcsec2 (stdev = 0.020 mag/arcsec2). 396 and 397 were remarkably stable broadband airglow nights. The 
gap in the data from the night of 398 was caused by a band of clouds which passed overhead. After Event A the 
night sky brightness continued to increase reaching a maximum on night 401. The nights of 402 and 406 showed 
decreasing broadband airglow brightness levels as space weather conditions returned to more normal levels.

Event B.  During the summer and fall of 2019 large coronal holes repeatedly pointed toward Earth. This series 
of events produced a broad maxima in night sky brightness near JD 2,458,786 (29 October 2019) in Fig. 4. Large 
increases in broadband night sky brightness occurred when particularly energetic streams in the solar wind 
impacted Earth’s magnetosphere. Event B is one of several broadband airglow increase events during an active 
period that spanned several solar rotations. It is marked on Fig. 4.

Zoltán Kolláth’s image (Fig. 9) was captured at CCIDSS on 20.10.2019 at 03:53 UT (2,458,776.66181 JD) at 
the beginning of an extended night sky brightness episode37. Fig. 10 shows the image’s temporal relationship to 
the other data. In Fig. 9, Green (558 nm) oxygen and orange (589 nm) sodium airglow are visible over the entire 
sky. The R,G, and B channels in the digital camera data provide estimates of the strength and spatial structure 
of the oxygen and sodium lines37.

Mackovjak et al. used the AMON UV photometer and all sky camera to observe the airglow 557.8 nm 
(O1-green line), 568.5 nm (no airglow), 630.0 nm (OI-red-line), and 700–900 nm (OH) from 20 October 2019 
to 1 November 2019. A plot of these data from JD 2,458,777 to 2,458,783 has been published48. The Mackovjak 
et al. data show a series of airglow increase brightness events in the time before and after Event B.

Space weather parameters and night airglow time-series brightness observations from JD 2,458,774 (19 
October 2019) to JD 2,458,789 (1 November 2019) are plotted in Fig. 10. The upper panel is a plot of normal-
ized solar wind and geomagnetic parameters versus the time in JD (days). The lower panel is a plot of the 5 min 
cadence broadband time-series airglow observations above the quiescent level, ΔMC(t), for each site in mag/
arcsec2 versus the time in JD–2,458,000 (days). There was a slow rise and fall in the airglow brightness over a 
two week interval. This period of time was characterized by predominately negative [B(t)z]GSM and a NKE(t) 
which varied significantly above its median value. Event B began near 2,458,780.8333 JD (24 October 2019) when 
a high energy stream in the solar wind produced a shock wave at Earth’s bow shock nose. A pulse in NKE(t), 
nearly 5 times its median level, deposited energy into the Earth’s magnetosphere. This produced a dramatic 
increase in geomagnetic activity, NAp(t). Meanwhile, the solar EUV as indicated by the N10.7 cm(t) flux was 
low and constant and is uncorrelated with broadband airglow brightness changes. The period of negative [B(t)
z]GSM which followed Event B allowed energetic charged particles to penetrate deep into Earth’s ionosphere. 
The shock wave triggered large variations in airglow brightness during the night reaching peak brightnesses near 
local midnight (Fig. 11). Of interest is the broadband airglow increase before the shock wave arrived. Perhaps, the 
shock wave triggered a release of stored magnetospheric energy in the near-Earth tail as has been demonstrated 
for geomagnetic events29. This plot defies a simple explanation.

The nightly evolution of Event B, initiated by a shock wave at 2,458,780.8333 JD, is shown in Fig. 11. The 
broadband 5 min cadence, time-series airglow measurements, ΔMC(t), above their quiescent levels are plot-
ted versus the time in hours relative to local midnight for 6 nights in Fig. 11. Before Event B the space weather 

Figure 8.   The 5 min cadence, broadband time-series airglow observations, ΔMC(t), at CCIDSS are plotted 
versus the time in hours relative to local midnight. Each ΔMC(t) point is the differential photometric broadband 
airglow brightness relative to the continuous light curve of quiescent airglow brightness (Fig. 1). This plot shows 
the shock wave Event A produced a broadband airglow intensity disturbance which lasted for several days. The 
triggering Event A began near 2,458,398.895833 JD.
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Figure 9.   On the night of October 19–20, 2019 Zoltán Kolláth captured this true color image at CCIDSS as part 
of a survey of dark sky sites in the American southwest. North is at the top of the image. He reported the airglow 
was unusually bright that night. His simple estimate gives 1.3 dsu increase in the red channel by the sodium line 
and 0.40–0.45 dsu by the sodium and the 558 nm oxygen line in the green channel of his DSLR37. These data are 
in agreement with the SQM-LU-DL data simultaneously recorded at CCIDSS.

Figure 10.   Upper panel: The normalized geomagnetic index, NAp(t), normalized solar wind kinetic energy, 
NKE(t), normalized N10.7 cm(t) solar radio flux along with the positive and negative z components of the 
interplanetary magnetic field in the GSM coordinate system in nT are plotted versus Julian Date (JD) in days. 
The shockwave in the solar wind arriving at 2,458,780.8333 JD features a dramatic sign change in [B(t)z]GSM 
and pulse in NKE(t) which appears to trigger geomagnetic and airglow variations. Similar events are observed 
on other occasions. Lower panel: the 5 min cadence broadband night time-series airglow measurements 
above the quiescent level, ΔMC(t), for each site are plotted versus Julian Date (JD) in days. Of interest is the 
broadband airglow increase in brightness before the arrival of the shockwave. This suggests preconditioning 
of the magnetosphere-ionosphere system may allow a shock wave to trigger a broadband night sky brightness 
increase event. Data from CCIDSS and CSSMLS, physically separated by 209 km, tracked together 6 days before 
and 8 days after Event B. During the intervening period they deviated significantly from each other. This may 
indicate broadband airglow features smaller than 209 km.
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conditions were not steady (see Fig. 10). The Event B shock wave triggered a geomagnetic disturbance whose 
peak daily Ap(t) was more than 6 times it’s median value. The Ap(t) peak values for the nights 781,782, and 783 
were 32, 56, and 39 indicates a significant geomagnetic event occurred.

From JD 2,458,777 to 2,458,783 the solar EUV as measured by the 10.7 cm(t) flux was low and constant 
(average 65.9 s.f.u., stdev = 1.9).

Event C.  March–April 2019 nightly airglow averages, ΔMCN(t), are compared with satellite, geomagnetic, 
and solar flux observations in Fig. 12. This time range was first identified by the effect night broadband air-
glow increases had on a large-scale municipal street light dimming experiment. Data show the midnight sky 
brightness over Tucson was correlated to changes in the natural airglow observed at CCIDSS6. The plot, Fig. 12, 
reveals a widespread increase in night sky airglow during a time when [B(t)z]GSM was predominately negative. 
Negative values of the z component of the interplanetary magnetic field diminish Earth’s magnetic field allow-
ing charged particles from the Sun to penetrate the Earth’s magnetic shield. The normalized solar wind kinetic 
energy, NKE(t) varied significantly above its median level and NAp(t) show enhanced geomagnetic activity. 
These quantities are defined in “Data collection and analysis” of this paper. Enhanced broadband airglow coin-
cides with Russell-McPherron prediction of increased geomagnetic activity26. This effect can, also, be seen in 
Figs. 6 and 10.

Figure 11.   The 5 min cadence broadband time-series airglow, ΔMC(t), at CCIDSS above its quiescent level are 
plotted versus the time in hours relative to local midnight. The ΔMC(t), measurements are plotted for the nights 
of 2,458,XXX where XXX is 776,780,781,782,783, and 785. The triggering Event B began near 2,458,780.8333 
JD.

Figure 12.   The upper panel plots measures of solar and geomagnetic activity parameters versus time in JD. 
The lower panel plots nightly airglow brightness averages above the quiescent level, ΔMCN(t), versus JD. The 
error bars are ± 1 standard deviation. They represent real brightness variations during the night. The actual 
measurement errors are less than 0.03 mag/arcsec2. The dashed line is a quadratic fit to all the data. The negative 
values of [B(t)z]GSM (plotted in red) allowed charged particles from the solar wind to penetrate Earth’s 
magnetic shield enhancing geomagnetic activity and terrestrial airglow. The Russell-McPherron effect models a 
statistical enhancement of geomagnetic activity over a long time base. Additional broadband night airglow data 
are required to firmly establish night airglow is statistically predictable using the Russell–McPherron effect.
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Semi‑annual brightness variations.  The distribution of 948 nightly airglow averages, ΔMCN(t), 
obtained at five sites, 4 September 2018 through 30 April 2020 are plotted in Fig. 13. On the vertical axis, each 
point is the corrected nightly average of airglow brightness, ΔMCN(t) above its quiescent level. The celestial 
and anthropogenic sources have been removed as outlined in “Data collection and analysis” of this paper. The 
horizontal axis is the time in fractions of a year (F). The data were sorted into 36 bins with an F width of 0.0278. 
The smoothed data curve was obtained from the 36 data bins using a 5 point triangular weighting function. The 
smoothed, binned, data curve of Fig. 13 shows a semi-annual variation in airglow brightness with broad peaks 
near 0.273 F and 0.837 F. The peak near 0.837 F has an amplitude and location strongly influenced by high speed 
streams in the solar wind from coronal holes on the face of the Sun which impact the Earth’s magnetosphere 
(Event A and Event B). The amplitude of the unperturbed broadband airglow semiannual variation during solar 
minimum is ~ 0.2 mag/arcsec2.

Bz GSM.  A total of 14,800, 1  h cadence, [B(t)z]GSM data points for the period JD 2,458,365.00 to JD 
2,458,990.458 (3 September 2018 through 20 May 2020) were obtained from the NASA OMNI website44. This 
is a very noisy data set. It has a maximum of 14.3 nT and a minimum of − 14.5 nT. The median is -0.17 nT with 
a standard deviation of 1.98. Binned [B(t)z]GSM data points are plotted in Fig. 14 versus the fraction of year F. 
To accomplish the binning, the 1 h cadence OMNI [B(t)z]GSM data were divided into 72 bins each 5.069 days 
wide in fractions of a year (F). The [B(t)z]GSM > 0 are the blue points and the [B(t)z]GSM < 0 are the red points 
for each bin. The error bars are ± 1 standard deviation and show the distribution of [B(t)z]GSM binned data. 
The Events A, B, and C all occurred when the average [B(t)z]GSM was less than zero. This plot shows that near 
the Vernal Equinox [B(t)z]GSM is negative for a sustained period of time. Near the Autumnal Equinox strong 
Events A and B influenced [B(t)z]GSM during that period of time. It should be emphasized that the NASA 
OMNI [B(t)z]GSM measurements at Earth’s bow shock nose have a chaotic nature since they are dominated by 
energetic streams and shock waves in the solar wind.

Figure 13.   The vertical axis are the ΔMCN(t) nightly average airglow data from Fig. 4. All 5 sites are plotted 
with the same symbol. The binned data and smoothed binned, data are described in the text. The horizontal 
axis is F, the fraction of a year. The error bars are ± 1 standard deviation and represent real changes during the 
night. This plot clearly shows the semi-annual variation in night sky brightness. Given the random nature of 
solar events, the precise amplitude and the location of the maximums and minimums are likely to shift as the 
temporal time base increases in length. This wave form is similar to the am geomagnetic index28.

Figure 14.   The NASA OMNI 1 h [B(t)z]GSM data. Plotted on the vertical axis are 5 day averages with standard 
deviations. The horizontal axis is fractions of a year. A sustained period during which [B(t)z]GSM < 0 occurred 
near the vernal equinox.
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Geographic variations.  Nights with unusually intense airglow detected through broadband filters as well 
as others with unusually faint airglow detected through broadband filters were observed at locations further 
than 8500 km apart. To illustrate these phenomena we calculated an average night sky brightness ΔMCN(t) with 
standard deviation for each of the 948 nights observed at CCIDSS, CSSMLS, Stars 18, Stars 62, and Stars 211.

CCIDSS and CSSMLS had 123 clear nights in common while CCIDSS and Stars 211 had 107 clear 
nights in common. These data were sorted to produce (x,y) pairs for each night in common. The x,y pairs, 
(CCIDSS,CSSMLS) and (CCIDSS, Stars 211) for each night in common are plotted as individual points in Fig. 15. 
The results for Stars 18 and Stars 62 are similar but not included since they are at a more northern latitude.

The (CCIDSS,CSSMLS) points in Fig. 15 track together more tightly than do the (CCIDSS, Stars 211) points. 
On a number of nights the broadband airglow at Stars 211 was significantly brighter than it was on the same 
night at CCIDSS. However, some of the very brightest night sky airglow nights at CCIDSS correspond to some 
of the very brightest airglow nights at both CSSMLS and Stars 211.

Discussion
There is no simple cause and effect relationship between solar activity, space weather, and changes in broadband 
night terrestrial airglow. However, there are coincidental relations between events on the sun, conditions in the 
near Earth environment, and the brightness of the night sky which need to be explored.

This paper is based on detailed analysis of individual astronomically dark nights during a deep solar mini-
mum. Taking a completely different approach, Alarcon et al. used statistical methods to analyze data from dozens 
of TESS-W photometers during solar minimum9. Many of their instruments are in locations with more than 0.5 
mag/arcsec2 of human caused artificial illumination. They report short time-scale variations in the night sky 
airglow which they attribute to events in the mesosphere.

Variations in broadband night sky airglow are not always accompanied by changes in 10.7 cm solar flux 
(Fig. 5). To put this fact into prospective, relationships between the brightness of the natural night sky and solar 
activity as measured by the 10.7 cm radio flux are discussed by many authors. Krisciunas et al. obtained V-band 
sky brightness from Cerro Tololo Inter-American Observatory CCD images over the course of a solar cycle12. A 
comparison of Fig. 5, this paper, and “Figure 2”  in the Krisciunas et al. paper indicates during solar minimum 
there are substantial variations in broadband airglow brightness when the 10.7 cm solar flux is relatively constant. 
In the same paper Krisciunas et al. “Figure 5” presents a linear relationship between CCD V-band sky brightness 
observations and the average of the 10.7 cm solar flux measured 4.5 days earlier over a complete solar cycle12. 
The range of these CCD broadband night sky brightness data correspond to approximately a (nL, s.f.u) of from 
(55 nL, 70 s.f.u.) to (80 nL, 215 s.f.u). These data indicate a V-band increase of -0.41 mag/arcsec2  corresponds to 
an increase of in 10.7 cm solar flux of 145 s.f.u over the course of a solar cycle. Observations of the oxygen green 
line, 557.7 nm, were made at Sacramento Peak, New Mexico from January 1960 to June 1963. The (I557.7nmin 
Raleighs), 10.7 cm in s.f.u) were found to range from approximately (60 Raleighs, 78 s.f.u.) to (440 Raleighs, 
170 s.f.u.)49. These data show a change of 92 s.f.u corresponds to an increase of approximately 2.2 magnitudes in 
the brightness of the green line. These and other studies show physical processes for which night airglow inten-
sity is strongly coupled to the solar EUV as measured by the 10.7 cm solar flux. Rosenberg and Zimmerman are 
able to correlate intensity of the 557.7 nm (OI) line and the 10.7 cm Solar flux changes during a solar cycle49. A 
recurrent hypothesis is, changes in photoionization on the Earth’s day-side produce subsequent variable night 
time airglow by re-radiation from atoms and molecules in a complex chemical environment. This concept can be 
used to relate changes in solar EUV, estimated from the 10.7 cm solar flux, to daily and yearly night sky bright-
ness changes throughout a solar cycle. Our Fig. 5 indicates on some occasions other physical processes produce 
significant changes in the intensity of broadband night airglow.

The existence of a semiannual variation in the brightness of the broadband natural night airglow has been 
reported in the astronomical literature. Patat reviews this situation and presents new data derived from spec-
troscopic observations in the UBVRI passbands at the Cassegrain focus of the 8.2 m telescopes at the Paranal 
Observatory in Chile15. These observations were made during the decline from maximum to minimum of Solar 

Figure 15.   Clear nights in common for CCIDSS-CSSMLS and CCIDSS-Stars 211. The horizontal axis is the 
ΔMCN(t) [nightly average] and standard deviation for CCIDSS. The vertical axis is the ΔMC-N(t) [nightly 
average] and standard deviation for CSSMLS (round red points) and the ΔMC-N(t) and standard deviation for 
Stars 211 (square blue points).



13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23893  | https://doi.org/10.1038/s41598-021-02365-1

www.nature.com/scientificreports/

Cycle 23. Patat reports a clear seasonal variation in the broadband VRI passbands with two broad maxima 
(April–May and October) and two broad minima (July–August and December-January). In the aeronomy lit-
erature, observations obtained over many years show there are semiannual oscillations in OI 558 nm and OH 
730 nm18,19. TIMED/SABER observations show a global distribution of oscillations in OH night glow emission 
with semiannual, annual, and quasi-biennial time scales50. Our data show during a deep solar minimum there 
are semiannual broadband night airglow variations with maxima near the equinoxes (Fig. 13). Our observa-
tions cover only a 1.65 year long period. As a result the location of the maxima and minima in Fig. 13 are shifted 
by space weather events such as Event A and Event B. It should be emphasized; in every case the semiannual 
modulation in night sky airglow is derived from noisy data. The precise details of the semiannual variation likely 
require a long base line in time.

Is it plausible the semiannual variations in night sky air glow are driven by similar processes to those explained 
by the Russell and McPherron model for the statistical behavior of geomagnetic events?26 Quantities derived 
from NASA OMNI [B(t)z]GSM data are plotted versus fraction of a year (F) in Fig. 14. It should be emphasized 
NASA OMNI data are measurements which include both the effects of space weather and the changing magnetic 
field orientations beautifully illustrated by Lockwood et al. in their “Figure 3 and Figure 4”27. Our Fig. 14 shows 
[B(t)z]GSM to be predominately negative for a substantial period of time near the vernal equinox while we were 
accumulating data. The situation is less clear near the autumnal equinox. In the Russell-McPherron effect the 
chaotic, highly variable, solar wind is modulated by the interplanetary magnetic field to produce a statistically 
discernible geomagnetic activity pattern using data encompassing a number of years. The data presented in 
Figs. 13 and 14 suggest it is possible broadband night sky airglow variations follow from changing magnetic field 
alignments. Data from more years will be required to put this hypothesis on a solid statistical basis.

For broadband night sky airglow increases observed near Event A and Event B:

1.	 There are substantial changes in broadband night airglow brightness (Figs. 4, 6, and 10).
2.	 The Earth encounters energetic streams in the solar wind. (Figs. 6 and 10)
3.	 The 10.7 cm solar flux is low and constant near its minimum values (Figs. 6 and 10).
4.	 [B(t)z]GSM is predominately negative (Figs. 6 and 10).
5.	 Images show a strong orange tint (Figs. 7 and 9).
6.	 The time development takes place over several nights. The peak brightness occurred several days after the 

triggering event. (Figs. 8 and 11).
7.	 There are substantial variations in broadband airglow during the night (Figs. 8, 10, and 11).
8.	 The large variations in broadband airglow during the night at various sites are apparently correlated (Fig. 10).
9.	 There are large amplitude geomagnetic events (Figs. 6 and 10).

Event A, Fig. 8 shows a airglow brightness change of approximately 0.40 mag/arcsec2 (1.44 times in intensity 
units). Figure 10 for Event B the airglow brightness also changes by more than 0.35 mag/arcsec2 (1.38 times in 
intensity units). Alarcon et al. used statistical methods to analyze data from dozens of TESS-W photometers9. 
They report observing short time-scale variations on most nights which they attribute to airglow events in the 
mesosphere. They do not report on the details of any specific events.

The orange tint of the images presented in Figs. 7 and 9 suggest Na airglow may have been excited during 
Event A and Event B37.

For broadband night sky increase Event C:

1.	 There are relatively small broadband night airglow brightness increases over a wide geographic area (Fig. 12).
2.	 [B(t)z]GSM is predominately negative for a significant period of time (Figs. 12 and 14).
3.	 The 10.7 cm solar flux is low and constant near its minimum value (Fig. 12).
4.	 Solar and geomagnetic activity varies above their median values (Fig. 12).

Some airglow night sky events are global. An example is Fig. 7. Reed et al. obtained maps of night airglow at 
630 nm from Ogo 4 satellite observations about a year before the time of maximum of Solar cycle 20. They show 
some very large structures in night sky airglow at mid-latitudes which change during the night51. Alarcon et al. 
used statistical methods to analyze data from dozens of TESS-W photometers9. They find a correlation between 
the physical separation of photometers and the standard deviation of the differences in their measurements. The 
data plotted in Fig. 15 show some very bright broadband airglow nights at CCIDSS are also very bright on the 
same night at both CSSMLS and Stars 211. Similarly some of the nights at CCIDSS during which the night sky 
broadband airglow was faintest were also, on the same night, among darkest nights at both CSSMLS and Stars 
211. The observations plotted in Fig. 15 suggest the presence of broadband night sky airglow events of various 
dimensions or, perhaps, they demonstrate semiannual variations for stations at similar latitudes. The amplitude 
of semiannual broadband night sky airglow variations shown in Fig. 13 as well as those published in the litera-
ture are on the order of 0.2 mag/arcsec2.9,15 The range of variations observed in Fig. 15 is much larger than these 
measured semiannual amplitudes of broadband night sky airglow. There are a number of nights which have bright 
broadband night airglow at Stars 211 and are simultaneously dim at CCIDSS. These nights do not seem to sup-
port the semiannual hypotheses. Even so, the reason for the trend displayed in Fig. 15 remains an open question.

Data presented in this paper show variations in broadband airglow with time-scales on the order of minutes, 
hours, days, and months. There are, undoubtedly, a number of interacting physical processes which cause what 
is observed. Localized aurorae outside the auroral oval have been observed and have an origin which is not 
completely understood52. We show during solar minimum the variations in broadband airglow are unrelated to 
changes in the 10.7 cm solar radio flux. Instead, they are likely caused by charged particles from the solar wind 
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which enter Earth’s magnetosphere. Observations by NASA’s IMAGE spacecraft and the joint NASA/European 
Space Agency Cluster satellites show that huge cracks develop in the Earth’s magnetosphere for hours allowing 
charged particles from the solar wind to enter the ionosphere51. Some of these cracks appear on a seasonal basis 
and others present themselves in a more random fashion. They are associated with magnetic reconnection of 
Earth’s magnetic field lines with those in the interplanetary magnetic field. It is postulated that magnetic fields 
from the Sun and Earth reconnect on Earth’s day side. From there the solar wind transports the reconnected 
magnetic flux to Earth’s night side where it is stored in the magnetospheric tail. This stored energy can be released 
by a triggering event53–55. The data from Events A and B, qualitatively, match this scenario (see Figs. 6, 8, 10, and 
11). Event C implies broadband night time airglow around the vernal equinox follows the Russell-McPherron 
prediction for geomagnetic activity (please see Figs. 12, 13, and 14).

Broadband night sky airglow and geomagnetic activity are both likely responses to changes in space weather. 
Sounding of the atmosphere by the SABER instrument aboard the NASA TIMED satellite over the course of 
a solar cycle relate changes in thermospheric cooling with variations in solar ultraviolet irradiance and geo-
magnetic activity56. Solar ultraviolet irradiance and geomagnetic processes are, also, related to cooling of the 
thermosphere by infrared radiation from nitric oxide over the duration of a solar cycle57. Thirteen years of 
data from the SABER instrument find the intensities of four night glow emissions are strongly coupled to solar 
radiation58. In this paper, Events A and B show broadband night sky airglow increase events coincident with 
Earth interacting with an energetic stream in the solar wind. Event C documents observed night sky broadband 
airglow brightness variations coincident with the alignment of the z component of Earth’s magnetic filed and 
the interplanetary magnetic field. Our results contribute to the continuing effort to unravel how solar-terrestrial 
interactions modulate night sky airglow emissions.

Conclusions
New observational data reveal changes in night time airglow which are significant in broadband astronomical 
and artificial light at night studies. SQM and TESS-W photometers sum all emissions in a broad cone to the edge 
of space and over a wide area of the sky. These characteristics make it difficult to identify the physical processes 
creating the emissions. However, these instruments produce time-series data which can be used to identify 
broadband airglow brightness events for further study.

During deep solar minimum the broadband night sky airglow is never constant in intensity. For our data set, 
there were nights when the SQM broadband airglow intensity at the natural night sky location CCIDSS, became 
as faint as 22.07 mag/arcsec2. On other nights the SQM broadband airglow was brighter than 21.57 mag/arcsec2.

We report, during solar minimum, significant episodes of increased night sky airglow are not produced by 
changes in 10.7 cm solar flux. We find these night sky brightening events are coincident with:

1.	 Changing orientation of the interplanetary magnetic field relative to Earth’s magnetic field and
2.	 Earth entering streams of energetic solar wind.

It is plausible episodes of increased broadband night sky airglow we observe could be amplified by a release 
of energy stored in Earth’s magnetospheric tail triggered by a shock wave in the solar wind.

Sites more than 8500 km along the Earth’s surface experience nights in common with either very bright or 
very faint night sky airglow emissions. The reason for this observational fact remains an open question.

Our data suggests the terrestrial night airglow responds to the energy input into the Earth’s magnetosphere 
in a fashion similar to the geomagnetic indices.

We strongly advocate the establishment of a global network of photometers located in places where anthro-
pogenic skyglow is at a minimum. These instruments would be used to track brightness variations of the natural 
night sky. Established astronomical observatories are the places to start. These measurements will have a signifi-
cant impact on the studies of astronomy, space weather, light pollution, biology, and recreation.

Data availability
The data that support the findings of this study are available on request from the corresponding author [ADG].
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